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Contour dynamical methods are being applied to a variety of inviscid incompressible flows 
in two dimensions. These generalizations of the “waterbag” method provide simplified models 
for following the evolution of contours x w that separate regions of constant density which are 
the sources of the flow. The inviscid evolution of contourj, 2:’ is usually an area-preserving 
map. For physically unstable problems, a piecewise-constant initial condition may result in an 
ill-posed problem. That is, contours may rapidly grow in perimeter and/or develop 
singularities and numerically induced small-scale structures in a tinite time. To avoid such 
problems and model realistic weakly dissipative or weakly dispersive flows, contour 
regularization procedures are required. Dissipative and dispersive tangential regularization 
procedures for one contour are introduced. A special case of the former, namely i, = px,, , 
corresponds in lowest order to a linear diffusion operator in two dimensions. The contour is 
parameterized with arc length using cubic splines and an adaptive curvature controlled node 
adjustment algorithm is used. A modified Crank-Nicolson method is used to solve the 
discrete representation of the full system, Y, = i, + ,ux,,. Numerical results are given for the 
evolution of initially elliptical shapes according to prescribed area-preserving maps. The 
numerical results for area evolution agree with analytical results. 

1. lNT~0DucTloN 

1.1. Survey of Developments 

Recently, there has been a renewed interest in computational studies of the 
evolution of ideal of nondissipative flows in two dimensions. Longuet-Higgins and 
Cokelet [ 1, 21 have studied incompressible shallow and deep water waves on boun- 
daries between regions where density is piecewise-constant. Baker et al. have also 
considered this problem [3] as well as the Rayleigh-Taylor problem of a heavier 
fluid above a lighter fluid [4]. Zabusky and his associates [5-81 have investigated the 
Euler equations with piecewise-constant vorticity distributions. Finally, Overman and 
co-workers [9, lo] have been studying the evolution of weakly ionized and strongly 
magnetized ionospheric plasma clouds in an electric field with a piecewise-constant 
ion density model. 

In all these cases, one is dealing with the evolution of curves in two space 
dimensions that separate regions of constant density. Because the densities are 
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discontinuous, there are no existence theorems for many of these flows and we have 
no assurance that initially smooth contours remain smooth for all timesr For 
example, we have found contours with corners that are steady solutions of the Euler 
equations with piecewise-constant vorticity [ II]. Furthermore, we have 
computational evidence that the ionospheric plasma problem is ill-posed. That is, 
contours rapidly develop regions of small-scale oscillatory numerical structure. This 
structure appears sooner if the resolution is increased, a classical manifestation of the 
numerical resolution of singularities. The goal of the present study is to introduce a 
rational and robust tangential regularization (or smoothing) procedure that represents 
aspects of true dissipative or dispersive processes on each contour. These processes 
can inhibit the development of singularities on contours. Thus, we shall be able to 
calculate approximate solutions beyond small times. 

Regularization, smoothing, or “cutoff’ methods are well known in science and 
engineering. They are often introduced in an ad-hoc way when a discipline is evolving 
rapidly. They are needed because some asymptotic approximation to a realistic (i.e., 
well-posed) problem omits terms or parameters from the equations of motion or 
restructures the initial conditions in order to render the problem analytically or 
computationally tractable. The omission or restructuring may lead to ill-posed or 
unstable evolutionary problems. For example, Longuet-Higgins and Cokelet [ 1 ] 
observed a high wave-number instability arise as their smooth wave propagated. They 
removed this structure with a five-point smoothing (or filtering) procedure that was 
used every few time steps. Baker et al. [3] claim to have found a “dipole” procedure 
that delays the onset of the instabiltiy. Thus, regularization procedures are models of 
realistic systems, and thereby enlarge the parameter space in which approximate 
solutions are obtained. We shall show how tangential dissipative regularization 
embodies one essential feature of two-dimensional diffusion, namely, the decay of 
small-wavelength contour perturbations. 

1.2. Regularization Concepts for One- and Two-Dimensional Flows 

A cogent example of regularization is provided by Burgers’ equation 

u, + uu, = UUXX’ 4x, 0) = u,(x), -cQ<x<+oo, (1.1) 

an ideal model of one-dimensional pressureless hydrodynamics, where u > 0 is a 
constant viscous parameter. For bounded and smooth u,(x), (1.1) has unique 
solutions and bounded derivatives for all times [ 12, 131. However, if one “simplifies” 
the problem by setting v = 0, the resulting Euler equation has the general solution 

u(x, t) = u,(x - u(x, t) t), 

and derivatives of u become singular at a time tB = lmin u;] -‘. Thus, for v > 0, 
characteristics are “prevented” from crossing. 

Similarly, for computational studies of shock-wave problems in one dimension with 
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negligibly small “true” viscosity, Richtmyer and von Neumann [ 14, 151 advocated 
the addition of a small-but-finite artificial or pseudononlinear viscosity to regularize 
the problem. In essence, they replaced the pressure p by p t q, where 

4 = mN42 if u, < 0, 

=o if u,> 0, (l-2) 

has units of (L/T)2 and vt is proportional to the fluid density p/p,,. They applied this 
regularization procedure to numerical solutions of one-dimensional compressible gas 
dynamics and verified that, for small shock thickness, the variation in dependent 
variables across the transition layer agrees with the jump relations obtained from 
Hugoniot theory. In recent years, linear higher-order dissipative processes [ 151 have 
been used in fluid dynamical simulations in one and two dimensions, e.g., 
q = (iY2~,,,) replaces (vu,). 

For two-dimensional nearly inviscid incompressible fluids the problem is more 
complicated. There are no steady-state solutions, corresponding to the Hugoniot 
relations, with which to make validating comparisons. For example, the vorticity- 
stream function form of the incompressible Navier-Stokes equations 

Wt -I- vywx - V/~CO~ = v Aw, Ay=--0 (1.3) 

(where w(x, y, 0) = w,,(x, y)) have been used to study 2D fluid turbulence [ 17, 181. 
For the Euler equations, obtained with v = 0, all isovorticity contours are 

convected with the flow (Helmholtz’s theorem). Zabusky et al. [5 - S] have further 
idealized the inviscid problem by assuming IX,, is a piecewise-constant function. 
Hence, w remains piecewise-constant and the problem is reduced to the self-consistent 
interaction of contours that separate regions of constant w. If w&y) is Holder 
continuous and in a bounded domain, then w remains Holder continuous and velocity 
gradients are bounded for all times 1171. 

If v is finite we know that (1) if w,, is piecewise-constant or smoother, regular 
solution exist for any finite time [ 171; (2) the integrals of w” (n even) of isolated 
vortex distributions of one sign decrease monotonically in time; and (3) topology 
changes may occur, that is, isovorticity lines may reconnect. 

For example, topology changes may occur after the shear (Kelvin-Helmholtz) 
instability has greatly disturbed a weakly perturbed set of isovorticity lines. See frame 
a (t = 0) of Fig. 1 (which is Fig. 8 of Zabusky and Deem [ 191) which shows isovor- 
ticity contours (positive contours are solid and negative are dashed of a simulation 
with Re = 750 on a 1282 grid with the flow confined near the center. As the process 
evolves, the isovorticity lines elongate and approach each other in certain regions. 
The strong vorticity gradients increase dissipation locally which manifests itself in 
contour pinching and rapid disappearance of long sharp (high-curvature) filaments. 
(see (t) in frames b and e.) In frame f we are left with several isolated rounded 
regions of vorticity. The region marked “secondary” in frame f arises from the 
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FIG. 1. Evolution of constant vorticity contours (9 levels) for a perturbed Gaussian profile that 
models a wake. (This is an augmented version of Fig. 8 in Ref. [ 191.) 

entrainment of opposite-signed vorticity, which we follow in the figure with the 
asterisked arrows. 

In Section 2.1 we derive higher-order dissipative and dispersive regularization 
procedures which inhibit the formation of contour singularities. The simplest 
dissipative algorithm includes terms in the evolution equations containing second 
partial derivatives with respect to arc length (proportional to local curvature). This 
causes the area and perimeter to decrease, the latter mainly in sharp regions of large 
curvature. In Section 2.2 we show how this procedure corresponds, in lowest order, 
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with the solution of the two-dimensional problem o, = UAW for special initial 
conditions. In Section 3.1 we describe algorithms for discretizing the continuum 
representation of Section 2. In Section 3.2 we include a robust curvature controlled 
adaptive algorithm for node-insertion-and-removal which maintains the product of 
(density-of-nodes) times (local curvature) to within a narrow range. In essence, the 
contour is parameterized by discrete nodes whose density as a function of arc length 
varies (adapts) inversely proportional to the local curvature. In Section 4 we present 
numerical results. In the concluding section we discuss concepts for multicontour 
regularization, a procedure necessary to obtain solutions at intermediate times. We 
shall consider, at another time, the contour reconnection problem associated with 
merging regions and pinching filaments. 

2. CONTINUUM THEORY OF REGULARIZATION 

2.1. Tangential Regularization 

The contours evolving in the plane are parameterized by D and t. We parameterize 
contours both by the location of nodes in the plane 

x = (x09 a), y(t, (I)), 

and by arc length derivative and local tangent angle (g(t, o), d(t, a)), where 

g E s, = [xi + yy. 

In the latter case, we also require the location of a point on the contour. 
If we take the time derivative of (2.2) we obtain 

g, = x,, cos 4 + yor sin $, 

where 

(2.1) 

(2.2) 

(2.3) 

cosq5=x,/g=xs, sind=y,/g=y,. (2.4) 

If we differentiate tan 4 = y/x with respect to time and simplify, we obtain 

g#l = -x,~ sin $ + ymt cos 4. (2.5) 
Thus, there is a unitary transformation between the two representations (x,, y,),s 
t g, v gh), where 

The curvature K is given by 

(2.7) 
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where 

(2.8) 

Assume that the evolution equations can be written as a sum of two terms 

(g> 41, = (it 8, + (G @I, (2.9) 

or 

(x, y);= ($v^>, + w, n (2.10) 

where (g, {), or (2, $), represent convective, usually area-preserving, terms and (G, @) 
or (X, Y) are the dissipative and/or dispersive regularization terms we are seeking. 
For example, for the Euler equations, (.?,$)I is obtained from by integrating around 
contours 30, that separate piecewise-constant regions of vorticity [S], or 

2, e (2, y”), = (27~~’ C [w]j 1 log r(dt’, dV), 
i au, 

where r* = (X - <)’ -I- (Y - ?,‘)’ and [~]i = Oj, outside - wj, inside. 
We now differentiate (2.10) with respect to c and substitute (2.6) to obtain 

(x,, Y,> = (G g@> u. (2.11) 

We now require that the right side of (2.11) be perfect derivatives of o. Hence, if 

X=STcostr5-Psin# and Y=,7-sin#+.%?cos#, (2.12) 

then for consistency 

G=ST,-qtdoF, 

and 

g@=Fs+fl@,. 

We simplify possibilities by setting Sr = 0 and find 

G=-q5,F 

and 

@=q. 

The contour evolution equations become 

(& 41, = ( !?v 6>, + (-Fz, %‘,) 

(2.13a) 

(2.13b) 

(2.14a) 

(2.14b) 

(2.15) 
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or 

(x, Y)~ = (i*v^), + Y(--sin 4, cos 4). (2.16) 

For processes which are dissipative (i.e., where contours become rounded, shrink, and 
vanish in time) we take Y = g,, where 

q =p, [KID-’ K. (2.17) 

For processes which are dispersive (such as surface tension where interfaces persist 
and oscillate in time) we take ,F” = YZ, where 

~z=&&(jK14-1K). (2.18) 

If p and q are > 1, we have nonlinear coefficients of dissipative and dispersive 
regularization in (2.17) and (2.18), respectively. The former is analogous to the 
nonlinear viscosity introduced by von Neumann and Richtmyer [ 141. For example, if 
,u, = 0 and p = 1, we obtain 

h=dt+WL and &=&PdK*, (2.19) 

or 

(x9 Y), = G y^)f + P1(X,, 9 YJ (2.20) 

The last follows because 

-K sin $ = -4, sin # = (cos d), = x,, , 

and similarly K cos 4 = yss. These equations are intrinsically nonlinear, for they are 
coupled through arc-length derivatives, e.g., a, = g-’ a,. Equation (2.20) with 
(2,3),=0 h as b een described by Brakke as the evolution of a curve by its “mean 
curvature,” a concept which is generalizable to the evolution of surfaces in higher 
dimensions [ 201. 

An alternate and concise view of these motions is obtained by examining the 
evolution of curvature, 

or 
K, = (#cd&?), = g-‘(#,)t -g-‘&K, 
K, = (k&), - Kg- ‘&) + (%‘,, + K2g1), 

(2.21) 

where 4, and g, are defined in (2.9). For dissipative regularization (p = 1) 

K, = P,(K3 + K,,) and (In 81, = -W* 

and for dispersive regularization (q = 1) 

K, = P&*Ks + L) and (In df = --012/2)(K*)v 

(2.22) 

(2.23) 
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Equation (2.23) is the modified Korteweg-de Vries equation which supports soliton 
solutions [21]. ‘The leading term in (2.22) may seem paradoxical, but it follows from 
the decrease in perimeter (or radius) due to regularization. That is, if we start with a 
circle, then K,, = 0 and 

K-2=K;2-2,U,t Or r’=ri-2p,t. (2.24) 

The last relation is not unexpected, for it arises in the argument of the Green’s 
function for two-dimensional linear parabolic equations. 

We now examine the evolution of the perimeter P = 4 ds and the area 
A = - $ y dx = - $ yx, da. The rate of change of perimeter 

P,= 
P 

g,du=& 
Q 

where the dispersive term vanishes identically, when q is odd and > 0. Thus, with 
dissipative regularization, regions of large curvature cause the main decrease in 
perimeter. The time rate-of-change of area is 

At = - j” (Y,x, + Y-C,) da = j (-Y,X, + xt y,) da, (2.26a) 

=a,- Fds=&,, 
4 1 

:n lKIPpl d#, (2.26b) 

where a, results from the convective part of the map and (2.26b) results after 
substituting *!Y = Y, + g2. Note that dispersive regularization does not affect area 
invariance. Note also for p = 1 and a, = 0 

and 

Pt=&-& Ic’ds 
f 

(2.27a) 

A, = -27r,u,, (2.27b) 

where (2.27b) is consistent with (2.24). Brakke also shows that the total curvature, 
4, IKI ds, is monotone decreasing for each c E [0, t, ] [20, Appendix B, 
Proposition 21. If p > 1 the perimeter and area will decrease more rapidly. 

2.2. Tangential Regularization and 20 Dl$%sion 

For initial value problems the 2D diffusion equation 

o,=vAw (2.28) 

acts to decrease (or spread) steep gradients and to smooth small-scale oscillatory 
perturbations of an initial state. Obviously a one-contour model cannot deal with the 
first phenomenon. We discuss multicontour representations in Sections 5. We now 
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clarify the correspondence between (2.28) and dissipative tangential regularization 
(X = 0 and g =,uK) by examining the evolution two piecewise-constant initial 
conditions. First we consider 

T(?=O)= {(X,y)ly=&COSmx), O<E< 1, m = 0(X’I*) (2.29) 

for contour dynamics and 

4x9 Y, 0) = 1 if y < E cos mu, 

=o if y > E cos mx, 
(2.30) 

for (2.28). In Appendix A we show that (2.29) becomes 

T(t) = ((x, y) 1 y = &e-‘m2’ cos mx + O(c3’*)}. (2.3 1) 

When (2.30) evolves w does not remain piecewise-constant, but it is very steep for a 
time. To compare (2.31) with the solution of (2.28) and (2.30), we examine the line 
f(x, t) defined by 

W(X,g,t)=fQ (2.32) 

and obtain 

y’x, t) = ceeum2’ cos mx + O(E 3’2), (2.33) 

as shown in Appendix A. 
For our second example we consider the analogous perturbed-circle initial con- 

ditions 

r(f = 0) = ((r, 8) 1 r = r. + E cos mQ}, 0 < E e 1 m = O(E- I’*) (2.34) 

for contour dynamics, and 

w(r, e, c = 0) = 1 if I < r0 + E cos me, 

=o if r > r0 + E cos me, 
(2.35) 

for (2.28). Similarly, one can show that 

T(t) = {(r, e) 1 r = r. - ,ut/r, + ce-umzr’ri cos me + O(E~/*)} (2.36) 

for contour dynamics and 

qe, t) = r. - W/r0 + ce -um2t/ri cos me + O(E~/~), 

for (2.24), where f((e, t) is the line defined by 

w(~, e, t) = 3 R. 

(2.37) 

(2.38) 
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Thus, if p = v both forms agree to lowest order for the evolution of small- 
wavelength terms. These results elucidate (2.27a). That is, large-rc fluctuations 
contribute to a rapid decrease in perimeter. The contour contraction in (2.37) is not 
surprising, because the maximum of w(x, y, t) is decaying and eventually all finite 
height contours of w vanish. 

3. DISCRETIZATION AND EVOLUTION OF REGULARIZED CONTOURS 

3.1. Discretization of Tangential Dissipative Regularization 

We first discuss procedures for approximating a contour by periodic cubic splines 
(PCS), as shown in Fig. 2. Details are given in Appendix B. This procedure includes 
a node-adjustment algorithm which is discussed in the next section. The time advan- 
cement of each node is done with an implicit predictor and an implicit corrector 
which both require the inversion of periodic tridiagonal matrices. For convenience we 
let i, = i in this section. 

At any time, the contour is represented by the set of nodes { (xj, yj) 1 1 <j < N), 
where (x~+~JJ~+~ ) = (x,, yl). The complete contour is determined in two steps, as 
described in detail in Appendix B. First, we obtain a contour f which passes through 
all the nodes and which is parameterized by the straight-line distance between 
adjacent nodes, 1. Thus, i== {(x’(l), y(Q)}, w h ere x’ and y’ are periodic cubic splines. 

Xl x(s) 

ADJUSTER 
NODES 

PREDICTOR 

DERIVATIVE 

CORRECTOR 

FIG. 2. Flowchart for contour calculation including node adjustment. Note, here and in Section 3, 
that is;,. 
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Next, we calculate the arc length between adjacent nodes on r’ using an adaptive 
quadrature rule which yields results with a prescribed accuracy and obtain the 
desired contour r = ((x(s), y(s))}. 

If we define the central-difference operator 

6xj = x(sj+ l/2) - x(sj- l/2)9 

with a similar expression for Syj and 6sj = sj+ ,,r - sj+ ,,2, then the second derivative 
x,, is discretized as 

Dj(xT s, = 2(sj+ 1 - sj-l)-‘[(sxj+ 1/2/ssj+ l/2) - (6xj-l,*/6sj- I/2)1. 
In the continuum limit (3.1) becomes 

(3.1) 

Dj(x, s> = xss + S Ldsj+ l/2 - ssj- I/7.1 xsss + +T[Casj+ l/2)’ 

- Cdsj+ l/2Nssj- l/Z) + tssj- 1/2)‘1 xs5ss + o((ss)2)~ (3.2) 

and we observe that the algorithm is first order if 6sj- ,,r # 6sj+ 1,2. A similar result 
holds for y,,. 

We advance (2.20) with a predictor and one (or more) correctors. That is, for x in 
(2.20) we obtain the predicted *x;” from 

(*XT+ 1 - x,“)/At = $7 + pDj( *x” + I’*, s”), (3.3) 

where the superscript n designates the time level, and define 

*X;+“* E pq+ +x;>, (3.4) 

where i; is the contribution resulting from discretizing i = i,. Equation (3.3) with 
(3.4) is a generalization of the Crank-Nicolson method. Since Dj is linear in *XT+’ 
we can combine it with the left side and obtain a periodic tridiagonal matrix in 
*XT”. To obtain a higher-order scheme, one could replace (3.1) with differences 
based on five adjacent nodes and one would have to invert a periodic five-diagonal 
matrix. Similarly, 

,*Y;+’ - y;)/Ar = $7 + pDj( *y” ’ 1’2, s”). (3.5) 

The corrector formula is 

(XJ” - $)/At = *$;+ ‘I2 + pDj(xn+ ‘12, *s”+ I’*), (3.6) 

where 

and 

*-$+1/24(*~;+1 +jJ), 

Xi 
n + l/2 ~ 1 (x ?+I + XT), 2 , 

*s;+1/* s jpsi”+ 1 + sj”)A 

(3.7) 

581/52/2-IO 
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That is, the arc length *sJ’ ’ and the convective time evolution *iTjn+’ are computed 
using the predicted nodes ( xj * ‘+I, *,vJ” ‘). The formulas used in the program are 
written in matrix form as 

[l + CP](x a+‘) =dt(&) + [ 1 - P](x”), (3.8) 

where am is cyclic tridiagonal matrix with elements 

(arn)jJ-I = -pd@ssjm_,,* + gsj”,,,,)~‘(6s,“_,,,)-‘, 

(am)j,jtl = -PWSim_,,* -I gq+ *,*)-'(q+ 1/J', 

Cam)j,j = -Ca">j,j-* - tum)j,j+ 1) 

(3.9) 

and where m = n for the predictor and m = n + f for the corrector. 

3.2. Curvature-Controlled Node Adjustment Algorithm 

For area-preserving maps the perimeter may grow indefinitely if instabilities or 
nonlinear filamentation processes are present. Thus, to control the growth of trun- 
cation errors and to minimize computation, we insert, remove, and adjust nodes 
according to the magnitude of the local curvature of r after an a priori prescribed 
number of time steps (the question mark in Fig. 2). Here we shall outline a nonunique 
scheme for accomplishing these objectives. 

We represent r= { (x(s),Y(s))} by {(s, K(S))}, w h ere IC is the periodic cubic spline 
fit to the curvature calculated from the periodic cubic spline representation of 
((x(s), y(s))}. First, we divide the curve into segments in which the curvature varies 
monotonically. In each segment we adjust the nodal intervals to satisfy certain 
constraints where we begin at the end which has the larger ] K ] and march to the other 
end. We attempt to set the new internodal distance, h, 3 sk+ , - sk, at sk to 

hk* = cl/l +/A (3.10) 

but we require that ht satisfy two constraints: 

and 

(3.12) 

The upper limit h,,, guarantees a minimal a priori accuracy, which, for example, 
is necessary for solving problems where the advective velocity (G), is obtained from 
the solution of an integral equation [9, lo]. The lower limit guarantees a maximum 
accuracy and also prevents the number of nodes from growing too rapidly. The value 
Ofhmin depends upon ,U (which determines a true scale size). Equation (3.12) controls 
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the ratio of adjacent internodal distances. Hence, if !z$ lies within the range 
lh mar, h,i,], our algorithm is 

or 
h,=h: if hz >< (1 f r) hkFl, 

h,=(l *r)hk-l if hz 3 (1 f r)h,-,. 
(3.13) 

The parameter r is 0.3 in all the runs in this paper. (In recent studies of the Euler 
equations [8], we have found that if (3.10) is replaced by hc = cl/~rc(S,J4, where 
0.25 < /I < 0.4, then more accurate results are obtained.) 

The order in which the segments are adjusted depends on the maximum ] KI in each 
segment. The algorithm begins with the segments with the largest maximum ] K[ and 
ends with the segments with the smallest. (There are always at least two segments 
with the same maximum (K 1.) This guarantees that the regions of large curvature (i.e., 
small-scale structures) are well resolved, which is the primary aim of the algorithm. 
However, it does not guarantee that the ratio of internodal distances will satisfy 
(3.12) at the boundaries between segments. Thus, some segments may have to be 
redone-but generally not more than 2 times. Note that the use of segments is 
essential in contours where narrow regions of large curvature develop, as shown in 
Fig. 3, because it avoids the problem of readjusting nodes in the vicinity of these 
narrow large-curvature regions or of “skipping-over” them. Note that the selection of 
parameters ci, h,,,, and hmin depends both on ,u and on the accuracy of the method 
of calculating the inviscid component of the advective velocity, $. 

After all segments have been adjusted, we have the locations of the desired nodes 
(s: ] 1 < k < fl}, where @ is the new number of nodes. Using the periodic cubic 
spline representations for r, we obtain the location of the new nodes { (x(s:),y(s:)) ] 
1 <k<#}. 

4. DISCUSSION OF NUMERICAL COMPUTATIONS 

In this section we present computations which illustrate properties of dissipative 
tangential regularization with node adjustment. In each case we begin with an ellipse 
and for our advective flows 12, we use three area-preserving maps: 

(1) translation, 

FIG. 3. Graphs of (a) 1: 0.25 ellipse described in Table Ia 
Table Ic at times, 0, 1,4, both in a rotating frame of reference. 

and (b) 1: 0.125 ellipse described in 

(4. la) 
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(2) rotation, 

ZABUSKY AND OVERMAN 

t-c 91, = Q,(-J4 x); (4.lb) 

and 
(3) differential rotation, 

(4.lc) 

where r = (x2 + y*)“*. In the above u,, v2, Q,,, and r0 are constants. 

The predictor-corrector algorithm, described in Section 3.1, was used with 
At = 0.01 or 0.02 and a node adjustment was done every 0.20 units of time. 

The quality of the runs is seen by comparing the number of nodes N, the area A, 
the perimeter P, and the maximum and minimum curvatures K,,, and K,,,~” (as 
described in Appendix B) as a function of time. The true area A,, = A(0) - 2npt (see 
(2.27b)) is also given along with the relative error in the area, E,~ = (At, - A,,,)/A,,. 
We compute the area A,,, by applying the adaptive integration routine, described in 
Appendix B, to A = - 4~ dx, where the line integral is over the contour. (The 
relative error is lop5 and the absolute error is 10e4.) 

The initial conditions for advections (4.la) and (4.lb) were ellipses with major- 
axis: minor-axis of 1: 0.25 and 1: 0.125. Results are given, respectively, in Tables Ia 
and Ic for the former (where ci = 0.03, h,i, = 0.001, h,,, = 0.03, and N(0) = 283 
and 271) and Tables Ib and Id for the latter (where c, = 0.01, hmin = 0.00025, 
h max = 0.01, and N(0) = 83 1 and 843). The two discretizations were used to assess 
truncation errors. Note that the precise value of N(0) was chosen by the node 

TABLE Ia 

The Evolution of a 1: 0.25 Rotating Ellipse with 0, = 1.0 (rad/sec) 
and ,u = 0.002” 

t N P At, E4 K tnax Kltl,” 

0.0 283 4.2892 0.78540 0 16.01 0.2500 
0.2 282 4.2717 0.78289 0 14.23 0.2503 
0.4 280 4.2550 0.78037 -1.3 13.27 0.2505 
0.6 280 4.2388 0.77786 -1.3 12.64 0.2508 
0.8 280 4.2229 0.77535 -1.3 12.14 0.25 11 
1.0 280 4.2075 0.77283 -2.6 11.74 0.25 14 
2.0 278 4.1338 0.76027 -2.6 10.47 0.2529 
3.0 276 4.0645 0.74770 -5.3 9.73 0.2545 
4.0 274 3.9980 0.735 14 -6.8 9.22 0.256 1 

a Single precision, At = 0.02; h,i, = 0.001 and h,,, = 0.03. 
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TABLE Ib 

The Evolution of a 1: 0.25 Rotating Ellipse with 0, = 1.0 (rad/sec) 
and fi = 0.002’ 

t N P 4 &A K nlax KIlli” 

0.0 831 4.2892 0.78540 0 16.00 0.2500 
0.2 831 4.2717 0.78289 0 14.21 0.2503 
0.4 828 4.2550 0.78037 0 13.27 0.2506 
0.6 828 4.2388 0.77786 0 12.62 0.2509 
0.8 827 4.2230 0.77535 0 12.13 0.2512 
1.0 826 4.2075 0.77283 0 11.74 0.2515 
2.0 821 4.1338 0.76027 0 10.47 0.2530 
3.0 815 4.0644 0.74770 0 9.73 0.2545 
4.0 808 3.9978 0.73514 0 9.22 0.2561 

‘The resolution is increased fourfold from Table Ia. Double precision, 
dt = 0.01; hmi, = 0.00025 and h,,, = 0.01. 

TABLE Ic 

The evolution of a 1: 0.125 Rotating Ellipse with Q, = 1.0 (rad/sec) 
and ,u = 0.002a 

0.0 271 4.093 1 0.39270 0 64.19 0.1250 
0.2 297 4.0377 0.39019 -2.6 37.47 0.1251 
0.4 304 3.9917 0.38767 -5.2 32.53 0.1253 
0.6 306 3.9499 0.38516 -7.8 29.3 1 0.1254 
0.8 305 3.9107 0.38265 -7.8 27.57 0.1256 
1.0 303 3.8735 0.38013 -13.2 25.44 0.1257 
2.0 297 3.7056 0.36757 -19.0 21.29 0.1263 
3.0 292 3.5554 0.35500 -28.2 19.25 0.1273 
4.0 288 3.4159 0.34243 -35.0 17.94 0.1282 

’ Single precision, At = 0.02; h,,, = 0.001 and h,,, = 0.03. 

adjustment algorithm, as determined by (3.10), (3.1 l), and (3.13). ‘The small-N 
calculations were made in single precision (8 significant figures on the University of 
Pittsburgh DEC- 10). To avoid small amplitude-and-wavelength numerical curvature 
oscillations, the large-N runs were made in double precision. The effect of the higher 
resolution can be seen in x,,,(O) which should be 16.0 and 64.0 for the 1: (f) or 
1: (1) ellipses, respectively. 

For uniform translation (4.la), our algorithm was studied, without loss of 
generality, with ur = v, = 0. For uniform rotation (4. lb), we set Q, = 1 radian per 
unit time and obtained nearly identical results and so we discuss only the latter. As 
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TABLE Id 

The evolution of a 1: 0.125 Rotating Ellipse with 0, = 1.0 (rad/sec) 
and p = 0.002’ 

t N P At, &A K max Knin 

0.0 843 4.093 1 0.39270 0 64.05 0.1250 
0.2 898 4.0376 0.39019 0 36.69 0.1251 
0.4 898 3.9914 0.38767 0 31.46 0.1253 
0.6 898 3.9494 0.385 16 0 28.59 0.1254 
0.8 894 3.9102 0.38265 0 26.67 0.1256 
1.0 892 3.8730 0.38013 -2.6 25.25 0.1258 
2.0 879 3.7048 0.36757 -2.7 21.25 0.1265 
3.0 867 3.5545 0.35500 -2.8 19.21 0.1273 
4.0 853 3.4148 0.34243 -5.8 17.91 0.1282 

’ The resolution is increased fourfold from Table Ic. Double precision, 
At = 0.01; hmi, = 0.00025 and h,,, = 0.01. 

time evolved we observed a rapid initial decrease in curvature followed by a slower 
decrease. Thus, for the 1: a ellipse, where AC = 0.02, the maximum curvature 
decreased by 26% between 0 < t < 1.0 while it decreased by 16% in 1.0 < t < 4.0. 
Also the number of points slowly decreases with time. Note that Tables Ia and Ib are 
nearly identical and that the effect of the higher resolution can be seen in E, which is, 
in fact, zero to 5 significant digits in Table Ib. For the 1: (i) ellipse, where At = 0.02 
for the low-resolution run and At = 0.01 for the high-resolution run, the situation is 
more complicated. The curvature did again decrease-by 40% in 0 < t < 1.0 and 
12% in 1.0 < t < 4.0 but the number of nodes increased initially. The reason lies in 
the observation that although the curvature is decreasing in time in a very small 
neighborhood of the tip, there are nearby regions of smaller (but still large) curvature 
where the curvature is increasing in time initially. The competition between these 
processes results in an initial rapid increase in N from 843 to 898. This competition 
in fact, leads to the appearance of spurious maxima 0.0006 units from the tip when 
At = 0.02. We are certain that these new maxima were due to the larger time step and 
not the node distribution. Our evidence is that they disappeared when we set 
At = 0.01 and 0.005, but did not disappear (and were resolved very well) when we 
kept At = 0.02, increased the number of points near the tip, and turned off the node- 
adjustment algorithm. 

The third advective flow (4.1~) (with r0 = 1 and 0, = 1) provides a simple model 
of the breaking-and-filamentation behavior of linearly unstable isolated vortices. We 
compare two runs without and with regularization, Table IIa (with ,u = 0.0) and 
Table IIb (with ,u = 0.002), respectively. The initial contour is a 1: f ellipse with 
N(0) = 220 nodes (c, = 0.025, h,,,,” = 0.01, and h,,, = 0.025). Table IIa shows a 
much more rapid growth in curvature than Table IIb. The former run terminated at 
t = 4.60 when the number of nodes demanded by the node-insertion algorithm 
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TABLE IIa 

The Evolution of a 1: 0.25 Ellipse with Differential Rotation and R, = 1.0, 
r. = l/2, and ,u =O.O." 

0.0 220 4.28920 0.78537 0 16.56 0.250 
1.0 341 4.98618 0.78537 7.6 21.75 -154.0 
2.0 412 6.50500 0.78537 14.1 45.57 -202.0 
3.0 479 8.28297 0.78537 16.6 102.8 -201.0 
4.0 582 10.16042 0.78537 16.6 214.0 -231.0 

’ Single precision, At = 0.02; h,,, = 0.01 and‘ h,,, = 0.025. 

TABLE IIb 

The Evolution of a 1: 0.25 Ellipse with Differential Rotation 
and Q = 1.0, r0 = l/2, and p = 0.002“ 

0.0 220 4.28920 0.78537 0 16.56 0.250 
1.0 294 4.80609 0.77279 -2.6 16.07 -23.08 
2.0 363 5.97258 0.76021 -6.6 25.37 -18.90 
3.0 448 7.24906 0.74763 -13.4 35.62 -15.67 
4.0 548 8.47613 0.73510 -17.7 45.00 -14.03 
5.0 636 9.60453 0.72254 -29.1 53.75 -13.01 
6.0 716 10.61442 0.70997 -46.5 62.34 -12.34 
7.0 791 11.49434 0.6974 1 -66.0 71.19 -11.88 
8.0 887 12.32767 0.68484 -94.9 80.92 -11.57 

’ Single precision, At = 0.02; h,,, = 0.01 and h,,, = 0.025. 

exceeded 900. The strange (increasing-decreasing) behavior of E, in Table IIa is due 
to the large-rapid fluctuations in curvature which develop in this unregularized run, 
as shown in Fig. 4c. 

In Figs. 4a and 4b we present contour plots corresponding to the results in 
Tables IIa and IIb, respectively. In Figs. 4c and 4d we show curvature K vs arc length 
corresponding to Figs. 4a and 4b. (Note, the ordinate varies geometrically.) The 
unregularized contour develops large values of 1~1, 0( lo’), that fluctuate rapidly over 
very short intervals near “corners.” (For graphical convenience, curvature values are 
not plotted if 1 ICI > 102.) 

The regularized contour shows a smooth growth in perimeter and a contraction in 
width of the filamentary arms. For convenience, we track three points in Figs. 4b and 
4d with 0, *, +. The 0 is the location of the reference node for arc length, s = 0. (s 
increases counterclockwise.) Note at t = 8 the curvature at s = 0 is <O. The * is the 
location of the one tip, which persists and becomes the end of one of the filaments. 
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FIG. 4. Contour evolution of an initial 1: 0.25 ellipse with a prescribed differential rotation, (4.1~); 

(a) p = 0, Table IIa; (b) .U = 0.002, Table IIb; (c) curvature vs arc length, p = 0, Table IIa; (d) curvature 
vs arc length, ,U = 0.002, Table IIb. The 0, *, and + in Figs. 4b and 4d show corresponding locations. 
(Note, the ordinate for curvature is a geometric scale: + 1 *, ~t2~, +33,... . The arc length is zero at 0 and 
increases in a counterclockwise direction.) 

The magnitude of K at * increases monotonically because the tip radius is decreasing. 
The maximum of K at + results from the differential rotation and eventually 
decreases in time because of regularization. Note, that these extrema are properly 
resolved by the node-adjustment algorithm. 

5. DISCUSSION 

We have presented continuum equations for dispersive and dissipative tangential 
regularization of the motion of one contour. For the latter we have shown a 
correspondence for short times with the two-dimensional linear diffusion equation, 
6.1~ = v Aw. To obtain a more accurate correspondence at longer times will require a 
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multicontour model. The nature of the mutual interactions between contours is 
governed both by the advective i, and dissipative parts of the real evolutionary 
process. For example, Overman and Zabusky [22] have related the steepening of the 
“backside” of ion-density clouds to the overtaking and approach of contours. A 
proper normal direction regularization procedure will yield dynamical equations for 
the intercontour separation distance that results from a competition between an 
“approach” velocity due to i, and a “separation” velocity due to p Vu. This is 
analogous to the steep negative gradients that arise in solutions of the one- 
dimensional Burgers’ equation (1.1) that result from a competition between UU, and 
vu,, * 

APPENDIX A: CORRESPONDENCE OF TANGENTIALREGULARIZATION 
AND 2D DIFFUSION 

We shall now compare tangential regularization of a contour dynamical algorithm 
without convection 

to a two-dimensional dissipative motion 

q=vAw, (X,Y> E I?*. 64.2) 

For (A.]) the initial contour r, is 

z-,= ((x,y)jy=&cosmx}, O<E< 1, E”%?=o(l), (‘4.3) 

and the corresponding initial condition for (A.2) is w(x, y, 0) = oO(x,y), where 

W&Y) = 1 for y<T,, 

=o for y>r,. 
(A.41 

If we replace (x,,, ySS) in (A.l) by rc(-sin 4, cos d), then (A.l) becomes 

(x3 Y>, = P[(X, Y,, - Y,x,,)/(x~ + YL)21(-Y,7 x,h (A.9 

where we have used (2.3) and (2.6) and D parametrizes the contour. 
We perform a perturbation analysis in the variables C = mu and r = m’t, where 

x&z* 2) = z/m + &XC’) + E3’*x(*’ + . . ‘, 

y(& T) = EY") + py'*' + * . ., 64.6) 
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and 
X(“‘(Z’, 0) = 0 for n>l, 

yyz, 0) = cos mx for n=l, 

=o for n > 2. 

The first- and second-order evolution operators are 

x(1’ = 0 r , yj” = pyg,‘,‘, 

x12) = -pms’12yy yg) yj2' = pyg ) 

64.7) 

G-W 

where we have made repeated use of xy’ = 0. Solving, we obtain 

x = 0 - e2m sin(2mo)( 1 - e-2um2f)/4 + O(e2), 

and 

y = tze-um2r cos mb + O(c2). 

Omitting terms O(e312) or higher, we obtain 

x = 0, y = ee -um2t cos mx. (A-9) 

The solution of (A.2) with (A.4) can be written as 

or 

w(x,y,[)= $ + (471”c)-1 j+Jge-(r6"i411( jscos*6dtle-(Y-n)'i4.r. (A. 10) 
Y 

We now seek a correspondence between the two solutions. Since the dissipation 
process in (A.2) instantaneously smooths cc,, everywhere, a comparison is not unique. 
To compare the lowest-order contour dynamical solution (A.9), we choose a line 
y(x, t) defined by w(x, jr, t) = f, or 

o= +ccJ 
1 

-a, &ze-(x-6)~/40t j+tcosm’d~e-“‘-S’*/4”t, (A.1 1) 
B 

that is, a line at the original half-magnitude level. The second integral of (A. 11) can 
be written as 
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= (4ut)“‘(.g - ( g3/3) + O( g”)), (A.12) 

where g = (4~)“*(-9 + E cos mc). We now assume that vt is sufficiently large so 
that 

g* = (4vt)-‘(Y- & cos mu)* < 1. (A.13) 

The integral over the leading term in (A. 11) yields 

y’= ee-um2t cos mu, (A. 14) 

which agrees with (A.9) if ,U = u. Thus, to first order the tangential regularization 
procedure agrees with two-dimensional dissipation. Note that the preceeding 
statement is derived under the assumptions that the comparison is made at o = 4. 

APPENDIX B: CONTOUR PARAMETERIZATION AND APPROXIMATION 

In this apendix we describe how to obtain an analytical representation of the 
contour r passing through N nodes in the plane {xi, y1 1 1 <j < N). To parameterize 
the contour, we first calculate the straight-line distance between adjacent nodes 
Alj= ((x,+1 - xj)2 + (Yj+ 1 -Yj )*)“*. We use the set of points {lj, X(lj)) and {lj,y(li)} 
to obtain the cubic spline representation r’= {x(l), y(l) IO < I< P,}, which passes 
through the original nodes. The tilde indicates that the parameterization is the 
straight-line segments and P, is the corresponding perimeter. 

Second, we calculate the arc length along r’between adjacent nodes, or 

Asi = (‘=‘j+’ ((d-?(l))’ + (do)‘)“‘. (B-1) 
JI=I, 

This integral is evaluated using an adaptive quadrature routine based on Simpson’s 
rule [23]. In all our numerical results the relative error is 10e5 and the absolute error 
10e4, although quite often the error in perimeter and area is much smaller. 

Finally, with the arc length calculated by (B. 1) we use the set of points { (sj, x(sj)} 
and (sj,Y(Sj)} to obtain two periodic cubic spline representations of the contour 
r = {(x(s), y(s) ( 0 < s < P,}. This is the parameterization used in all our calculations. 
For example, we can calculate the tangent angle 4 and curvature K for any s by 

tan 4(s) =Y’(s)/x’(s), (B.2) 

and 

K(S) = x’(s)y”(S) - x”(s)y’(s), (B-3) 
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where 

x’(s) = dx(s)/ds. 

The area, A = - J”rv dx, is calculated by discretizing the contour integral and again 
using the adaptive quadrature routine. 
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Note added in proof: With reference to the discussion following Eq. (1.3), J. Marsden has called our 
attention to the work of V. 1. Yudovich (“Nonstationary flow of an ideal incompressible fluid,” Zh. 
Vychisl. Mut. i Mar. Fiz. 3 (1963), 1032-1066) which shows that the two-dimensional Euler equations 
with initially piecewise-constant distributions of vorticity are a well-posed problem. 
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